UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE PESQUISA E PÓS-GRADUAÇÃO

Plano de Ensino

DISCIPLINA: Técnicas de Otimização CÓDIGO:

Validade: A partir do 1º semestre de 2019.

Carga Horária: 60 horas-aula

Créditos: 04

Área de Concentração / Módulo: Sistemas Elétricos / Disciplinas Obrigatórias;

Modelagem e Controle de Sistemas / Formação Específica

Ementa:

Programação linear. Método Simplex. Programas Lineares Duais. Otimização nãolinear. Métodos de direções de busca. Métodos de exclusão de semi-espaços. Algoritmos evolutivos. Problema de otimização vetorial. Soluções de Pareto. Geração de Soluções Eficientes. Algoritmos de Otimização Multiobjetivo. Aplicações de otimização na Engenharia.

INTERDISCIPLINARIDADES

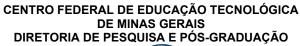
Inter-relações desejáveis

É desejável que os conhecimentos adquiridos na disciplina *Técnicas de Otimização* possam ser aplicados, principalmente, nas seguintes disciplinas e linhas de pesquisa:

- **Disciplinas** ⇒ Controle Robusto; Sistemas Multivariáveis; Modelagem e Controle de Sistemas Complexos; Modelagem de Sistemas Eletromagnéticos; Planejamento de Sistemas de Potência; Tópicos Especiais em Modelagem e Controle de Sistemas; Tópicos Especiais em Sistemas Elétricos.
- **Linhas de Pesquisa** ⇒ Sistemas Elétricos: Planejamento e Operação de Sistemas Elétricos de Potência; Eletromagnetismo Aplicado. Modelagem e Controle de Sistemas: Sistemas de Controle.

UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA **DE MINAS GERAIS** DIRETORIA DE PESQUISA E PÓS-GRADUAÇÃO

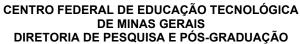

Plano de Ensino

Objetivos - Possibilitar ao estudante os seguintes conhecimentos:

- Conhecer as técnicas de otimização aplicadas nas buscas das soluções dos problemas de engenharia.
- Utilizar o método Simplex para solução de problemas de programação linear.
- Conhecer os diferentes algoritmos de otimização para solução de problemas de otimização não linear identificando qual é o mais adequado para cada tipo de problema.
- Tratar problemas de otimização não-linear com restrições de desigualdade e de igualdade.
- Solucionar problemas de otimização vetorial por meio dos algoritmos tradicionais e algoritmos de otimização multiobjetivo.

Marque com um X no quadro:				

UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA



Plano de Ensino

Uni	dades de ensino	Carga-horária
Unitidates de elisilio		Horas-aula
1	Definições de Referência.	6
	 Introdução a Sistemas de Projeto Assistido por 	
	Computador.	
	Otimização em PAC.	
	Abordagem escalar e vetorial.	
	 Caracterização das Funções. 	
	 Superfícies de Nível e Modalidade. Bacias de Atração. 	
	Continuidade e Diferenciabilidade.	
	Convexidade e Quasi-convexidade.	
	Mínimos Locais e Mínimos Globais. Caracterização dos	
	Mínimos Locais.	
2	Propriedades básicas de programação linear.	4
	 Introdução. 	
	 Exemplos de problemas de programação linear. 	
	Soluções básicas.	
	 O Teorema Fundamental da Programação Linear. 	
3	O método Simplex.	6
	Pivôs.	
	Pontos extremos adjacentes.	
	 Determinação da solução factível mínima. 	
	Procedimento computacional – Método Simplex.	
	Variáveis artificiais.	
	Forma matricial do método Simplex.	
	Programas Lineares Duais.	
4	Propriedades básicas da otimização não-linear.	2
	Interpretação Geométrica.	
	 Formulação do Problema de Otimização. 	
	Otimização Sem Restrições.	
	Estratégias de Direção de Busca.	
	Estratégias de Exclusão de Regiões.	
	Estratégias de Populações.	
	Otimização com Restrições de Desigualdade.	
	Interpretação geométrica de uma restrição de	
	desigualdade.	
	 Interpretação geométrica de várias restrições de 	

UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA

Plano de Ensino

	desigualdade.	
	 Barreiras e Penalidades. 	
	 Composição pelo Máximo. 	
	 Otimização com Restrições de Igualdade. 	
5	Direções de busca.	8
	 Estrutura Básica. 	
	 Busca em Direções Aleatórias. 	
	 Algoritmo do Gradiente. Cálculo do Gradiente. 	
	 Otimização Unidimensional. 	
	Critérios de Parada.	
	Convergência.	
	Algoritmo do Gradiente Conjugado.	
	Aproximações Quadráticas.	
	Algoritmo de Newton.	
	Método de Newton Modificado.	
	Calculo Numérico da Hessiana.	
	Correção de Posto 1.	
	Métodos Quasi-Newton.	
	 Tratamento de Restrições. Método de Barreira. Método 	
	de Penalidades.	
	Características de Comportamento.	
6	Exclusão de semi-espaços.	6
	Formulação Geral.	
	Métodos de Planos de Corte.	
	 Algoritmo de Planos de Corte de Kelley. 	
	Algoritmo Elipsoidal.	
	Algoritmo Elipsoidal com "Deep Cut".	
	Tratamento de Restrições.	
	 Características de Comportamento. 	
7	Otimização por Populações.	8
	Algoritmo Evolucionário Simples.	-
	Algoritmo de Simulated Annealing.	
	 Algoritmos Genéticos. 	
	 Algoritmo Genético - Codificação Binária. 	
	 Algoritmo Genético - Codificação Real – Polarizado. 	
	 Tratamento de Restrições. 	
	Características de Comportamento.	

UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE PESQUISA E PÓS-GRADUAÇÃO

Plano de Ensino

	 Algoritmos de Evolução Diferencial. 	
	 Otimização por Enxame de Partículas. 	
8	Soluções de Pareto.	2
	 Problema de otimização vetorial. 	
	Ordenamento de soluções.	
	Conjunto Pareto-Ótimo.	
	Solução utópica.	
	 Problema de determinação das soluções eficientes. 	
	 Condições de Kuhn-Tucker para eficiência. 	
9	Geração de Soluções Eficientes.	6
	Abordagem via Problema Ponderado.	
	 Abordagem via Problema épsilon-Restrito. 	
	 Abordagem híbrida: ponderando e restringindo. 	
	 Abordagem da Programação-Alvo. 	
	Abordagem Px.	
	Método de Tchebycheff.	
	Testes de eficiência.	
10	Algoritmos de Otimização Multiobjetivo.	8
	 Aptidão em algoritmos evolutivos multiobjetivo. 	
	 Algoritmo de otimização multiobjetivo NSGA-II: 	
	ordenação de não-dominância, distância de	
	aglomeração, cruzamento SBX, mutação polinomial,	
	recombinação e seleção.	
	 Evolução diferencial multiobjetivo – DEMO. 	
	Algoritmo evolucionário multiobjetivo baseado em	
<u> </u>	decomposição - MOEA/D.	
11	Aplicações de otimização na Engenharia.	4
	Total	60

Métodos de Avaliação

Trabalhos computacionais, avaliações individuais e apresentação de trabalho.

UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE PESQUISA E PÓS-GRADUAÇÃO

Plano de Ensino

Bibliografia Básica

- TAKAHASHI, R. H. C. (2003) Notas de Aula: Otimização Escalar e Vetorial, PPGEE-UFMG (disponíveis na homepage: http://www.mat.ufmg.br/~taka). Arquivos: OTEV-Vol1.pdf e OTEV-Vol2.pdf
- 2. LUENBERGER, D. G., Linear and Nonlinear Programming, New York: Addison-Wesley, 2nd edition, 2003.
- 3. CHANKONG, V. Multiobjective decision making: theory and methodology. Mineola, N. Y.: Dover Publications, 2008.

Bibliografia Complementar

- 1. KREYSIG, E. Advanced Engineering Mathematics. New York: John Wiley and Sons, 2005.
- 2. BAZARAA, M. S., SHERALI, H. D. e SHETTY C. M. Nonlinear Programming: Theory and Algorithms. New York: John Wiley e Sons, 2006.
- 3. DEB, K. Multi-objective optimization using evolutionary algorithms. Chichester: John Wiley & Sons, 2001.
- 4. GRIVA, I. Linear and nonlinear optimization. 2 ed. Philadelphia: SIAM, 2009.
- 5. SUN, W. Optimization theory and methods: nonlinear programming. New York: Springer, 2006.

Coordenador do Programa de Pós-Graduação em Engenharia Elétrica